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ABSTRACT: This article presents a computational approach to the

image reconstruction of a perfectly conducting cylinder illuminated
by transverse electric waves. A perfectly conducting cylinder of

unknown shape buried in one half-space and scatters the incident

wave from another half-space where the scattered field is recorded.

Based on the boundary condition and the measured scattered field, a
set of nonlinear integral equations is derived, and the imaging prob-

lem is reformulated into an optimization problem. The steady state

genetic algorithm is then employed to find out the global extreme so-
lution of the cost function. Numerical results demonstrated that, even

when the initial guess is far away from the exact one, good recon-

struction can be obtained. In such a case, the gradient-based meth-

ods often get trapped in a local extreme. In addition, the effect of dif-
ferent noise on the reconstruction is investigated. VVC 2006 Wiley Peri-

odicals, Inc. Int J Imaging Syst Technol, 15, 261–265, 2005; Published online in

Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20060
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I. INTRODUCTION

The inverse scattering technique for imaging the shape of a per-

fectly conducting cylinder has attracted considerable attention in

recent years. They can apply in noninvasive measurement, medical

imaging, and biological application. In the past 20 years, many rig-

orous methods have been developed to solve the exact equation.

However, inverse problems of this type are difficult to solve,

because they are ill-posed and nonlinear. As a result, many inverse

problems are reformulated as optimization problems. Generally

speaking, two main kinds of approaches have been developed. The

first is based on gradient searching schemes such as the Newton–

Kantorovitch method (Roger, 1981; Tobocman, 1989; Chiu and

Kiang, 1992), the Levenberg–Marguart algorithm (Colton and

Monk, 1986; Kirsch et al., 1988; Hettlich, 1994), and the succes-

sive-overrelaxation method (Kleiman and van den Berg, 1994).

These methods are highly dependent on the initial guess and tend to

get trapped in a local extreme. In contrast, the second approach is

based on the evolutionary searching schemes (Xiao and Yabe,

1998; Chiu and Chen, 2000). They tend to converge to the global

extreme of the problem, no matter what the initial estimate is (Rah-

mat-Samiia and Michielessen, 1999; Li et al., 2004). Owing to the

difficulties in computing the Green’s function by numerical method,

the problem of inverse scattering in a half-space has seldom been

attacked. Moreover, most microwave inverse scattering algorithms

developed are for TM wave illumination in which vector problem

can be simplified to a scalar one and in which less works have been

reported on the more complicated transverse electric (TE) case.

In the TE case, the presence of polarization charges makes the

inverse problem more nonlinear. As a result, the reconstruction

becomes more difficult. To the best of our knowledge, there is still

no investigation for a buried conductor illuminated by TE waves.

In this article, image reconstruction of a perfectly conducting

cylinder buried in a half-space illuminated by TE waves is investi-

gated. The steady state genetic algorithm (Vavak and Fogarty,

1996; Zhen et al., 2004) is used to recover the shape of the

scatterer. In Section II, the theoretical formulation for the elec-

tromagnetic imaging is presented. The general principle of the

genetic algorithm and the way we applied them to the imaging

problem are described. Numerical results for various objects of

different shapes are given in Section III. Section IV is the

conclusions.

II. THEORETICAL FORMULATION

A. Direct Problem. Let us consider a perfectly conducting cylin-

der buried in a half-space (region 2) with permittivity "2 and con-

ductivity �2, above which lies another half-space (region 1) with

permittivity "1 and conductivity �1, as shown in Figure 1. The me-

tallic cylinder with cross section described by the equation � ¼ F(�)
is illuminated by an incident plane wave, whose magnetic field vec-

tor is parallel to the z axis (i.e., transverse electric or TE polariza-

tion). We assume that the time dependence of the field is harmonic

with the factor ej!t. Let Hi denote the incident field form region 1

with incident angle �1 as follows:

Hi

* ¼ e�jk1ðy cos �1þx sin �1ÞZ � ð1ÞCorrespondence to: Chien-Ching Chiu; E-mail: chiu@ee.tku.edu.tw

' 2006 Wiley Periodicals, Inc.



Owing to the interfaces, the incident plane wave generates two

waves that would exist in the absence of the conducting object.

Thus, the unperturbed field is given by the following equation:

�H ¼ ðe�jk1 ½y cos �1þx sin �1� þ H1e
�jk1½�y cos �1þx sin �1�ÞẐ y � �a;

ðH2e
�jk2½y cos �2þx sin �2�ÞẐ y > �a;

�

ð2Þ

where

H1 ¼
�
Z1 � Z2
Z1 þ Z2

�
e2jk1a cos �1 ;

H2 ¼ 2Z1e
jk1a cos �1e�jk2a cos �2

Z1 þ Z2

k1 sin �1 ¼ k2 sin �2

k2i ¼ !2"1�0 � j!�0� i ¼ 1; 2 ImðkiÞ � 0;

Z1 ¼ �1 cos �1; Z2 ¼ �2 cos �2 �1 ¼
ffiffiffiffiffi
�1

"1

r
�2 ¼

ffiffiffiffiffi
�2

"2

r
:

For TE case, the magnetic field has only one component along

the Z axis such that the scattered magnetic field Hs at the point (x,y)
in Cartesian coordinates or (r, �) in polar coordinates is given by

Hsðx; yÞ ¼
Z 2�

0

Gðx; y;Fð�0Þ; �0Þðj!"ÞJsmð�0Þd�0 ð3Þ

with

Gðx; y; x0; y0Þ ¼ G1ðx; y; x0; y0Þ y � �a;
G2ðx; y; x0; y0Þ ¼ Gf ðx; y; x0; y0Þ þ Gsðx; y; x0; y0Þ y > �a;

�

ð4Þ

where

G1ðx; y; x0; y0Þ ¼ 1

2�

Z 1

�1

j

�1 þ �2
ej�1ðyþaÞ e�j�2 ðy0þaÞ e�jaðx�x0Þ d�;

ð4aÞ

Gf ðx; y; x0; y0Þ ¼ j

4
H

ð2Þ
0 k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q� �
ð4bÞ

Gsðx; y; x0; y0Þ ¼ 1

2�

Z 1

�1

j

2�2

�2 � �1
�2 þ �1

� �
e�j�2ðyþ2aþy0Þe�jaðx�x0Þd�;

ð4cÞ

�2i ¼ k2i � �2 i ¼ 1; 2 IMð�iÞ � 0 y0 > a:

Here, Jsm(�)is the induced surface magnetic current density, which

is proportional to the normal derivative of the magnetic field on the

conductor surface and G(x, y;x0, y0) is the Green’s function which

can be obtained by Fourier transform. In Eq. (4b), H0
(2) is the Han-

kel function of the second kind of order zero. We might face some

difficulties in calculating the Green’s function. The Green’s func-

tion, given by Eq. (4), is in the form of an improper integral, which

must be evaluated numerically. However, the integral converges

very slowly when r and r0 approach the interface y ¼ �a. Fortu-
nately, we find that the integral in G1 or Gs may be rewritten as a

closed-form term with a rapidly converging integral (Chiu and

Kiang, 1990). Thus the whole integral in the Green’s function can

be calculated efficiently.

For a perfectly conducting scatterer, the total tangential electric

field at the surface of the scatterer is equal to zero.

n̂� 1

j!"
r� H

� �
¼ 0; ð5Þ

where n̂ is the outward unit vector normal to the surface of the

scatterer.

For the direct scattering problem, the scattered field Hs is calcu-

lated by assuming that the shape is known. This can be achieved by

first solving Jsm in Eq. (5) and then calculating Hs using Eq. (3). To

verify our numerical results, the scattering field of a cylinder with

circular cross section is first calculated by the analytic theorem and

compared with those obtained by the moment method. It is found

that a good agreement has been achieved. Moreover, the discretiza-

tion number of Jsm(�) for the direct problem is two times than that

for the inverse problem in our simulation, since it is crucial that the

synthetic data generated by a direct solver are not like those

obtained by the inverse solver. For the inverse problem, assume that

the approximate center of scatterer, which in fact can be any point

Figure 1. Geometry of the problem in (x, y) plane.
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inside the scatterer, is known. Then the shape function F(�) can be

expanded as follows:

Fð�Þ ¼
XN=2

n¼0
Bn cosðn�Þ þ

XN=2

n¼1
Cn sinðn�Þ; ð6Þ

where Bn and Cn are real coefficients to be determined, and N þ 1

is the number of unknowns for the shape function. In the inversion

procedure, the steady state genetic algorithm is used to minimize

the following cost function:

CF ¼ 1

Mt

XM1

m¼1
Hexp

s ðrmÞ � Hcal
N ðrmÞ

�� ��2�

� Hexp
s ðrmÞ

�� ��2þ�0ð�Þj2
o1=2

; ð7Þ

where Mt is the total number of measurement points. Hs
exp(r) and

Hs
cal(r) are the measured and calculated scattered fields, respec-

tively. The factor �|F0(�)|2 can be interpreted as the smoothness

requirement for the boundary F(�).

B. Steady-State Genetic Algorithm. The genetic algorithm is

a global optimization method based on genetic recombination

and evolution in nature. The iterative procedures of GA are used

by starting with some randomly selected population of potential

solutions, and then gradually evolve toward a better solution

through the application of the genetic operators: reproduction,

crossover, and mutation operators. In our problem, both parame-

ters Bn and Cn are encoded using gray code. The steady-state

genetic algorithm is employed for the imaging problem which

has been investigated recently. The variance of the steady-state

genetic algorithm is to insert the new individuals generated by

crossover and mutation into the parent population to form a tem-

porary population, and new offspring is obtained by using rank

selection scheme.

It should be noted that the calculation of the Green’s function is

quite computational expensive. The steady-state genetic algorithm

has not only the characteristic of faster convergence but also the

lower rate of crossover. As a result, it is a suitable scheme to effec-

tively save the calculation time for the inverse problem as compared

with the generational GA.

III. NUMERICAL RESULTS

We illustrate the performance of the proposed inversion algo-

rithm and its sensitivity to random noise in the scattered field.

Let us consider a perfectly conducting cylinder buried in a loss-

less half-space (�1 ¼ �2 ¼ 0). The permittivity in each region is

characterized by "1 ¼ "2 and "2 ¼ 2.55"1 respectively, as shown

in Figure 1. The frequency of the incident wave is chosen to be

3 GHz, i.e., the wavelength 	0 is 0.1 m. The object is buried at

a depth of a ¼ 	0 and the scattered field is measured on a prob-

ing line along the interface between region 1 and region 2. Our

purpose is to reconstruct the shape of the object by using the

scattered field at different incident angles. To reconstruct the

shape of the object, the object is illuminated by incident waves

from three different directions, and eight measurement points at

equal spacing are used along the interface y ¼ �a for each inci-

dent angle. There are 24 measurement points in each simulation.

The incident angles are equal to 458, 908, and 1358, respectively.
The coding length of each unknown coefficient, Bn (or Cn), is

Figure 2. (a) Shape function for example 1. The star curve repre-

sents the exact shape, while the solid curves are calculated shape in

iteration process. (b) Shape function error in each generation. (c) Shape
function error as a function of noise. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com]

Vol. 15, 261–265 (2005) 263
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Figure 3. (a) Shape function for example 2. The star curve repre-

sents the exact shape, while the solid curves are calculated shape in

iteration process. (b) Shape function error in each generation. (c) Shape
function error as a function of noise. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com]

Figure 4. (a) Shape function for example 3. The star curve repre-
sents the exact shape, while the solid curves are calculated shape in
iteration process. (b) Shape function error in each generation. (c)
Shape function error as a function of noise. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com]

264 Vol. 15, 261–265 (2005)
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set to be 16 bits. The search range for the unknown coefficient

of the shape function is chosen to be from �0.001 to 0.05, B0

is chosen to be 0.01–0.3. The crossover probability pc is equal

to 0.05 and mutation probability pm is set to be 0.025. For the

first example, the needed CPU time is about 2 h for the case on

Celecron 2.0 GHz computer. The needed CPU time is about 3 h

for the case on Celecron 2.0 GHz computer for the other

examples.

In the first example, the shape function is chosen to be F(�) ¼
(0.1 þ 0.01 cos2�) m. The reconstructed shape function for the

best population member is plotted in Figure 2a, with the shape

error shown in Figure 2b. The reconstructed shape error is 2%.

The CPU time for this case is about 2 h on Celecron 2.0 GHz

computer.

For investigating the sensitivity of the imaging algorithm against

random noise, we added the uniform noise to the real and imaginary

parts of the simulated scattered fields. Normalized standard devia-

tions of 10�5, 10�4, 10�3, 10�2, and 10�1 are used in the simula-

tions. The shape error versus normalized noise level is plotted in

Figure 2c. It is found that the effect of noise to the shape reconstruc-

tion is negligible for normalized standard deviations below 10�3.

The reconstructed result is quite good.

In the second example, the shape function is chosen to be F(�) ¼
(0.1 þ 0.04 cos2�) m. The reconstructed shape function for the best

population member is plotted in Figure 3a, with the shape error

shown in Figure 3b. The reconstructed shape error is 3%. The CPU

time for this case is about 3 h on Celecron 2.0 GHz computer. The

shape error versus normalized noise level is plotted in Figure 3c.

In the third example, the shape function is chosen to be F(�) ¼
(0.1 þ 0.04 cos3�) m. The reconstructed shape function for the best

population member is plotted in Figure 4a, with the shape error

shown in Figure 4b. The reconstructed shape error is 3%. The CPU

time for this case is about 3 h on Celecron 2.0 GHz computer. The

shape error versus normalized noise level is plotted in Figure 4c.

IV. CONCLUSIONS

We have presented a study of applying the steady-state genetic

algorithm to reconstruct the shapes of an embedded conducting cyl-

inder illuminated by TE waves through the knowledge of scattered

field. Based on the boundary condition and measured scattered field,

we have derived a set of nonlinear integral equations and reformu-

lated the imaging problem into an optimization one. The genetic

algorithm is then employed to de-embed the microwave image of

metallic cylinder in the TE case, where the presence of polarization

charges makes the inverse problem more nonlinear and more diffi-

cult. In our experience, the main difficulties in applying the genetic

algorithm to the problem are to choose the suitable parameters, such

as the population size, coding length of the string (L), crossover
probability (pc), and mutation probability (pm). Different parameter

sets will affect the speed of convergence as well as the computation

time. According to our experimental result, the population size

should be about 10 times of unknowns to obtain better recon-

structed result. Numerical results show that good shape reconstruc-

tion can be achieved as long as the normalized noise level is

<10�3.
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